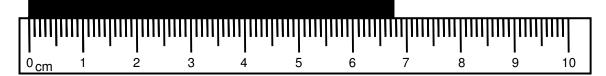
CHEMISTRY SOL REVIEW MATERIAL

SCIENTIFIC INVESTIGATION

1. On previous SOL tests, students have been asked to choose the piece of glassware that gives the most *precise* results. They have usually been given the following choices:


beaker flask pipet test tube graduated cylinder

Of these choices, the most precise piece of glassware is the **<u>GRADUATED CYLINDER</u>**

because EACH LINE REPRESENTS 1 mL or 0.1 mL. SMALL DIVISIONS BETWEEN LINES = MORE PRECISE

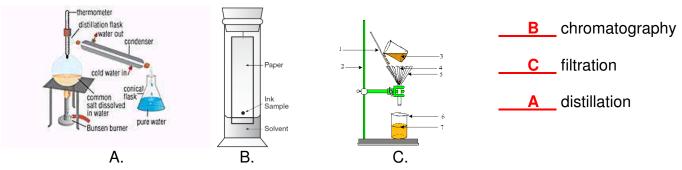
2. When you read the volume on a graduated cylinder or you measure length with a ruler, you should always estimate the final digit. The final estimated digit will always be one power of ten *smaller* what each line is worth on the instrument. In other words, if the ruler shows lines every 0.1 cm, then you estimate length to the nearest 0.01 cm.

Estimate the length of this strip: <u>6.75</u> cm

3. If you measure something in an experiment, why do you think it is a good idea to perform the measurement three separate times and take the average result?

TO VERIFY YOUR RESULTS; TO GET CONSISTENT, REPRODUCIBLE RESULTS

4. If you take several measurements, then your data will be precise if


THE NUMBERS ARE VERY CLOSE TO EACH OTHER

- 5. Data is considered to be *accurate* if <u>THE NUMBERS ARE CLOSE TO THE ACCEPTED VALUE</u>
- 6. A common scenario is to show data that is *precise but not accurate*. The boiling point of water is 100.0°C. Give an example of data for the BP of H₂O that is *precise but not accurate*:

Trial 1: 81°C Trial 2: 82°C Trial 3: 82°C Trial 4: 81°C (answers may vary)

- 6. Basic lab techniques for separation of a mixture are listed below. Match the physical property with the separation technique.
 - <u>C</u> chromatography A. boiling point
 - B filtration B. particle size
 - **A** distillation **C**. interaction with the solvent (polarity)

7. Now match the separation technique with the picture:

8. Fill in the blanks by writing numbers in either regular notation or scientific notation.

Regular Notation	Scientific Notation
15600	1.56 x 10 ⁴
250,000	2.5 x 10 ⁵
0.00045	4.5 x 10 ⁻⁴
2300	2.3 x 10 ³
0.0061	6.1 x10 ⁻³

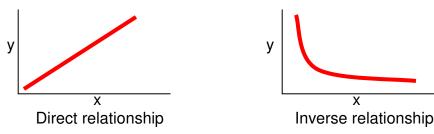
9. If you get a chemical on your skin or in your eyes, the first thing you should do is always

FLUSH OR RINSE WITH LOTS OF WATER

10. If you need to mix acid and water together, remember that the safety rules state that

you should always add <u>ACID</u> to <u>WATER</u> (Heat may be given off when acids are mixed with water. Concentrated acids are more dense than water; they sink to bottom of water and mix more evenly. Otherwise adding water to acid may cause spattering on top of liquid surface)

11. If you see a graph that shows a relationship between two variables, it will often fall into one of two categories: *direct relationship* or *inverse relationship*.


A *direct relationship* can be summarized by saying that as one variable increases, the other

variable INCREASES . An example of this would be VOLUME AND TEMP.

An inverse relationship can be summarized by saying that as one variable increases, the other

variable <u>DECREASES</u>. An example of this would be <u>PRESSURE AND VOLUME</u>

Sketch the general shape of each graph below:

12. If you are asked to calculate percent error, you should know that

```
percent error = <u>| measured value – accepted value |</u> x 100%
accepted value
```

A certain piece of metal has an accepted mass of 65.0 grams. Its mass was recorded in the laboratory as 55.0 grams. Calculate the *percent error* in this measurement.

10.0 g % ERROR = ------ x 100% = 15.4% 65.0 g

13. The following information concerns the metric system and other unit conversions. You should definitely know these numbers.

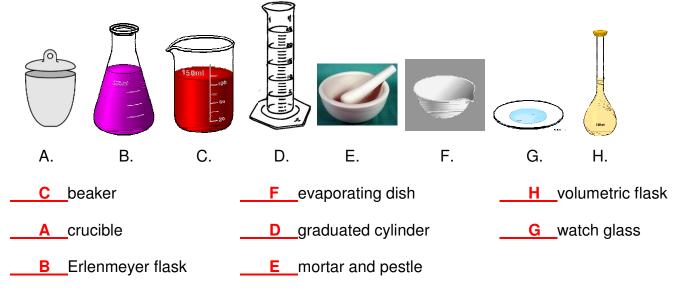
1 L = <u>1000</u> mL 1 kg = <u>1000</u> g ^oC + <u>273</u> = K

14. Students often forget how to determine how many *significant figures* are in a given measurement. See if you remember how to do this.

Number	Significant Figures
25.7	THREE
100.62	FIVE
5.00	THREE
200	ONE
200.0	FOUR
0.075	тwo
0.0050	TWO

15. When you multiply or divide two numbers, the rule is that the final answer should be rounded so that it has the same number of sig figs as the measurement with the fewest sig figs.

If the mass of an object is 2.7 g and the volume is 3.5 mL, calculate the *density* and round your answer to the proper number of sig figs.


2.7 g DENSITY = ------ = 0.7714 g/mL (unrounded) → 0.77 g/mL (rounded) 3.5 mL

16. Report the *average* of these three measurements using the correct number of significant figures.

Trial 1	Trial 2	Trial 3	Average					
85.2	84.9	85.4	85.2					
(uprounded 95.1)								

(unrounded = 85.1666)

17. Sometimes students are asked to identify pieces of laboratory equipment. In each blank below write the letter that matches the name of the equipment with the picture.

ATOMIC STRUCTURE AND PERIODIC RELATIONSHIPS

1. Here are some scientists you should know.

	Mendeleev	Rutherford	Dalton	Bohr							
DALTON		ding blocks of ma		that said that atoms were ught that all atoms of a given m							
RUTHERFORD	UTHERFORD He did a famous gold foil experiment that led him to conclude that all atom contain a tiny dense center of positive charge called the nucleus.										
BOHR	He tried to exp	lain the bright-lin	ne spectrum	of hydrogen with a model of the							
MENDELEEV	 atom in which electrons occupy fixed energy levels and circle the nucleus i orbits, like planets around the sun. He came up with the first periodic table and predicted the properties of a fe elements that had not been discovered yet. 										

2. Elements contain three subatomic particles. Fill in the missing data:

Particle	Charge	Mass Number	Location
PROTON	+	1	in the nucleus
NEUTRON	0	1	in the nucleus
ELECTRON	-	0	around the nucleus

3. Remember that the *atomic number* refers to the number of **PROTONS** in an atom.

The *mass number* refers to the sum of the **PROTONS** and **NEUTRONS** in an atom.

You should know that atoms are neutral. They have no charge, because they have the same

number of **PROTONS** and **ELECTRONS**

4 Fill in the missing information in the table.

			[Symbol	Protons	Neutrons	Electrons		
				²³ Na ⁺	11	12	10		
		Make sure that you		³¹ ₁₅ P	15	16	15		
		got the symbols		⁴⁰ ₂₀ Ca ⁺²	20	20	18		
		correct →		⁸⁰ ₃₅ Br ⁻	35	45	36		
				³⁹ ₁₉ K +	19	20	18		
				$^{75}_{33}$ As $^{-3}$	33	42	36		
5.	Whe	en a neutral ato	om g	ains or loses	electrons,	, it becomes	s an <u>ION</u>	<u>ı </u>	
6.	An a	atom that <i>loses</i>	ele	ctrons will hav	vea	charge.	This is calle	ed a <u>CATION</u>	
7.	An a	atom that gains	ele	ctrons will hav	ve a <u>-</u>	charge.	This is calle	ed an <u>ANION</u>	
8.	lf tw	o atoms have t	he s	same number	of proton	s, but differe	ent numbers	s of neutrons, these	
	ator	ns would repres	sent	t different	ISOTOPI	ES	of the s	same element.	
	right	ns will fill energy is an energy lev	vel c	diagram. Here	e are the ru	ules:		3p	
	aute	<u>bau rule</u> : start a	t the	e bottom and	work your	way up	3s		
	Pauli exclusion principle: no more than two electrons in each orbital. Two electrons in same orbital have opposite spins								
	Hund's rule: when a sublevel has more than one orbital (like the p sublevel) you should always put electrons one at a time into each orbital before you double them up								
9.	 Fill in the electrons in the diagram at the right for the atom NITROGEN. 								

10. Fill in the missing information in the table:

Element name	Element Symbol	Complete Electron Configuration	Noble Gas Abbreviated Electron Configuration
magnesium	Mg	1s ² 2s ² 2p ⁶ 3s ²	[Ne] 3s ²
sulfur	S	1s ² 2s ² 2p ⁶ 3s ² 3p ⁴	[Ne] 3s ² 3p ⁴
calcium	Ca	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	[Ar] 4s ²
gallium	Ga	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ¹	[Ar] 4s ² 3d ¹⁰ 4p ¹
silicon	Si	1s ² 2s ² 2p ⁶ 3s ² 3p ²	[Ne] 3s ² 3p ²

11. You might see an abbreviated electron configuration notation that looks like this. Fill in the Group number for each electron configuration.

	ns ¹	ns ²	ns ² np ¹	ns ² np ²	ns ² np ³	ns²np⁴	ns²np⁵	ns²np ⁶
Group	1	2	13	14	15	16	17	18

12. There are several things about the periodic table that you should know:

Horizontal rows of the periodic table are called ______ PERIODS

Vertical columns of the periodic table are called <u>GROUPS</u> or <u>FAMILIES</u>

Two elements that are located in the same group will have the same number of

VALENCE electrons, and they will have similar CHEMICAL PROPERTIES

13. There are seven elements that are diatomic, because they exist naturally in the form X₂. Write the symbols for these seven diatomic elements:

 $H_2 \qquad O_2 \qquad N_2 \qquad F_2 \qquad Cl_2 \qquad Br_2 \qquad l_2$

14. The following groups or sections of the periodic table have names that you should know. Name them.

 Group 1
 ALKALI METALS

 Group 2
 ALKALINE EARTH METALS

 Groups 3-12
 TRANSITION METALS

 Group 17
 HALOGENS

Group 18 NOBLE GASES

15. *Horizontal* trends of the periodic table:

As you move *from left to right across a period* of the periodic table,

THE NUMBER OF PROTONS will **INCREASE**

THE ATOMIC RADIUS tends to ______

THE 1st IONIZATION ENERGY tends to ______

THE ELECTRONEGATIVITY tends to **INCREASE**

16. Vertical trends of the periodic table:

Ιi

Be

As you move from top to bottom down a group of the periodic table,

THE PRINCIPAL QUANTUM NUMBER (energy level n) will **INCREASE**

THE ATOMIC RADIUS tends to **INCREASE**

THE 1st IONIZATION ENERGY tends to **DECREASE**

THE ELECTRONEGATIVITY tends to **DECREASE**

17. The valence electrons are the electrons that are in the <u>OUTER</u> energy level. If you are asked to identify how many valence electrons an atom has, all you have to do is count from left to right across the periodic table. Fill in the valence electrons in each box below:

1	2		Atomic number								(746	3	4	5	6	7	8
Li Li 19621 Lithium 201627 +1 Na	Be 4 12 ^{kart} Beryllium 2430 + 2 Mg		Transition Elements														
11 (Nebur Sodium store: +1 K	12 Nebu ² Magnesium Ca	3 "	4 Ti	5 V ::	⁶ Cr ³⁴	7 Mn:;	8 Fe	9 Čo ³¹	10 "" Ni "	11 Cu	12 • • • · · ·	13 Netarlayi Aluminum Ga	14 Newsor Silicon 72.00 :1 Ge	15 (Washor Phosphorus 74.40 +3 AS **	16 (Me/arlopi Sultur 7646 - 1 Sere	17 *7 (Nebulapi Chlorine 79904 ;1 Br **	18 /Nebufapi Argan *8 Kr *8
19 (#jusi Potassium	20 Arjus Calcium	21 <i>Arþólar</i> Scandium	22 Arja ^g ar Titanium	23 Matar Venedium	24 M/d ^a ar Chromium	25 (Ar)diai Manganese	28 Majarar Iran	27 Mataliai Cobelt	28 Matariar Nickel	29 Avtad∺ari Copper	30 A¢at≪ar Zinc		32 Apd%aAap Germunium	33 (Aфd%uskip) Arsenic	34 (Aþd ⁴ uslapi Selenium	35 (Aþd ⁴ us ⁱ ap ^r Bromine	36 (Atjadiusiepi Krypton
Rb 37	ືSr ∞	¥ 39	Zr 40	Nb :	"Mo ^{:1}	‴ Tc [₿]	44	Rh 45	"Pd"	Ag	Cd 48	1n 49	"Sn ^{‡‡}	Sb:	Te :	1 :;	Xe:
(A)kuri Rubidium 102.402 + 1	jejtu≓ Strontáum 107.00 + 2	Pojudias Ytterium 100000 + 3	Notes Zreenium 70.40 +4	Niobium Niobium	/0//dfarf Molybdenum 1848 + 6	jojatat Technetium 19007 + 5	Pojuditari Ruthenium 1803 + 8	Alfadiari Rhodium 1922 + 5	Palladium Palladium	Nifad Hari Biliyer Heller :	Alfad faaf Cadmium	filfadHaafapi Indium 201205 + 1	pipedriaulapi Tin	Antimony	(AğıdHasfapi Tellunium (xal) +2	(AğıdHaələpi İstina (sta)	(#)⊿d∺au%ap# Xenon (ssa) o
Cs	Ba 56	La 57 مەرەرمە	Hf 72 (%)/**#####	Та 73 радини	W 74 روبانویس الوروم	⁷⁵ Re	0s**	Ir ** 77 Palatudeat	PT 78 Dalahadeal	AU 79 2444444	Hg	*************************************	Pb 82 X4/*13*16*16*	83 83 84/%3*####	P0 84 2441-101-01-01-01-01-01-01-01-01-01-01-01-0		
Cesium (200) +1 Fr 87	Barium Barium Ra 88	AC 80	Hafniam Iari Rf 104	(su) Db 105	(and) Sg 106	Bhanium (sec) Bh 107	Osmium (m) HS 108	(mil) (mil) Mt 109	(xer)			Thelium rentheses ar ost common		Metal	Polonium	Astatine	Nonmetals
(Rijhu) Francium	Ratur Radium	Randraf Actinium		Ph/s/4df/xr2	Rojet-factor Seaborgium	Roje Hadron Bahrium	Page 100 Heating	Role ¹⁴ ad ¹ /ad ¹ Meitnerium									

18. The valence electrons will also be written as dots around the atoms. This is called the Lewis dot structure for an atom. Fill in the dots around each atom below:

Sometimes an SOL question may give you two different isotopes for an element and ask you to calculate the average atomic mass. Here is an example:

Isotope	Percent abundance
CI-35	75%
CI-37	25%

Average atomic mass of CI = (0.75)(35) + (0.25)(37) = 35.5 amu (atomic mass units)

19. Now you try it. Calculate the average atomic mass of Cu, based on the data below:

Icotopo	Percent
Isotope	abundance
Cu-63	70%
Cu-65	30%

Average atomic mass of Cu = (0.70)(63) + (0.30)(65) = 64

20. In Group 1, the most reactive element would be <u>Cs or Fr</u>. This can be explained because

because metals need to <u>LOSE</u> electrons when they undergo chemical reactions, and so

- the **LARGER** the atom, the more reactive it will be.
- In Group 17, the most reactive element would be ____F__. This can be explained because
- nonmetals need to **GAIN** electrons when they undergo chemical reactions, and so

the **SMALLER** the atom, the more reactive it will be.

NOMENCLATURE, CHEMICAL FORMULAS, AND REACTIONS

- 1. The two main types of bonds in chemistry are **IONIC** and **COVALENT**
- 2. An *ionic* bond is normally formed between a <u>METAL</u> and a <u>NONMETAL</u> In an ionic bond, the two elements should have a rather <u>LARGE</u> difference in their electronegativity values. In an ionic bond, electrons are transferred from the <u>METAL</u> to the <u>NONMETAL</u>. A classic example of an ionic compound is an alkali metal and a halogen, like NaCl. If an ionic compound is soluble in water, then it will produce aqueous ions in solution. Ionic compounds are considered to be *electrolytes*.

3. Fill in the names and formulas for the following ionic compounds

Chemical Formula	Chemical Name	
Na ₂ S	SODIUM SULFIDE	
MgCl ₂	MAGNESIUM CHLORIDE	
Al ₂ O ₃	ALUMINUM OXIDE	
Li₃N	LITHIUM NITRIDE	
K ₃ P	POTASSIUM PHOSPHIDE	
CaF ₂	calcium fluoride	Remember that we use Roman
Srl ₂	strontium iodide	numerals to
CuBr	copper(I) bromide	charge on the
CuBr ₂	copper(II) bromide	ion when it can form more than
Fe ₂ O ₃	iron(III) oxide	one charge.

4. The ionic compounds above are called binary compounds, because they consist of only two elements. Some ionic compounds contain more than two elements. That is because they contain polyatomic ions. The names, formulas, and charges for the following polyatomic ions should be memorized:

ammonium	<u>NH</u> ₄ ⁺	carbonate	<u> </u>	nitrate	NO ₃ -
hydroxide	OH ⁻	sulfate	SO 4 ⁻²	phosphate	PO ₄ -3

5. Fill in the names and formulas for the following ionic compounds that contain polyatomic ions

Chemical Formula	Chemical Name
NaNO ₃	SODIUM NITRATE
$Fe_2(SO_4)_3$	IRON(III) SULFATE
NH ₄ CI	AMMONIUM CHLORIDE
K ₂ CO ₃	potassium carbonate
Mg ₃ (PO ₄) ₂	magnesium phosphate
Ca(OH) ₂	calcium hydroxide

6. A *covalent* bond is normally formed between two **NONMETALS**

In a covalent bond, the two elements should have a rather <u>SMALL</u> difference in their electronegativity values. In a covalent bond, electrons are shared between the atoms. A classic example of this is H_2O . If a covalent compound (like sugar, $C_6H_{12}O_6$) is soluble in water, then it will *not* produce any ions. Covalent (molecular) compounds are *nonelectrolytes*.

7. Fill in the names and formulas for the following covalent compounds

Chemical Formula	Chemical Name]
CCl ₄	carbon tetrachloride	Remember that
PBr ₃	PHOSPHORUS TRIBROMIDE	we use prefixes to indicate the
SF ₆	SULFUR HEXAFLUORIDE	number of atoms in a
P ₂ O ₅	diphosphorus pentoxide	covalent
CS ₂	carbon disulfide	compound.

8. The following compounds are classified as *acids*, because they can all *donate* H⁺. Write the formulas in the blanks provided. You should know these formulas.

HCI hydrochloric acid	<u> H₂</u> SO₄_sulfuric acid	<u>H₂CO3</u> carbonic acid
HNO ₃ _nitric acid	<u> </u>	

You should know that an *acid is a* H^+ *donor* and it will have a pH that is **LESS THAN 7**

You should know that a base will *accept H⁺* and it will have a pH that is <u>MORE THAN 7</u>

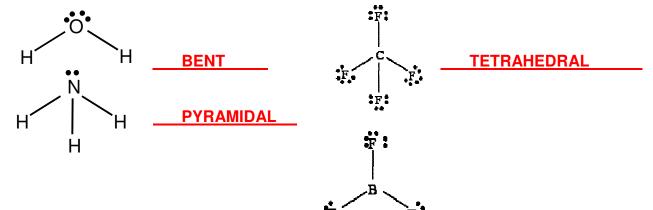
Examples of acids are listed above. Examples of bases would be anything that contains the

hydroxide ion. For example: NaOH, KOH, Mg(OH)₂, Al(OH)₃, etc.

The molecular formula only tells you the number of each kind of atom.

The structural formula will also tell you how the atoms are connected to each other.

10. The *empirical formula* is the lowest whole number ratio of atoms. For example, the empirical formula of $C_6H_{12}O_6$ is CH₂O. Write the empirical formula for each of the following:


```
C<sub>6</sub>H<sub>12</sub> <u>CH<sub>2</sub></u>
```

 $C_{10}H_{20}O_2 \underline{C_5H_{10}O} C_2H_6 \underline{CH_3}$

11. Here are some Lewis dot structures for simple molecules. Indicate the geometric shape for each molecule.

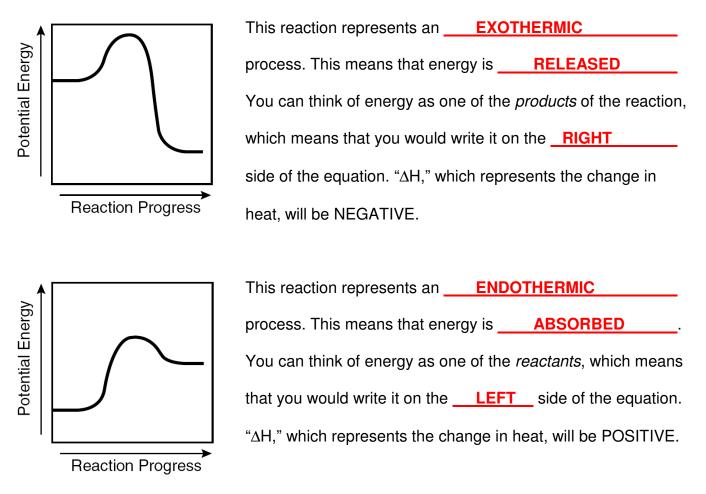
Your choices are bent, linear, trigonal planar, pyramidal, tetrahedral.

If you learn these 5 examples you should be in very good "shape".

12. Balancing equations is a skill that every chemistry student should know how to do. Here are some equations for you to balance.

C_3H_8	+	5 O ₂	\rightarrow	3 CO ₂	+	4 H ₂ O
CH₄	+	2 Cl ₂	\rightarrow	CH_2Cl_2	+	2 HCI
AI(OH) ₃	+	H ₃ PO ₄	\rightarrow	AIPO ₄	+	3 H₂O
2 FeCl ₃	+ 3	Na ₂ CO ₃	\rightarrow	$Fe_2(CO_3)_3$	+	6 NaCl
<mark>2</mark> AI	+ 3	H ₂ SO ₄	\rightarrow	$AI_2(SO_4)_3$	+	3 H ₂

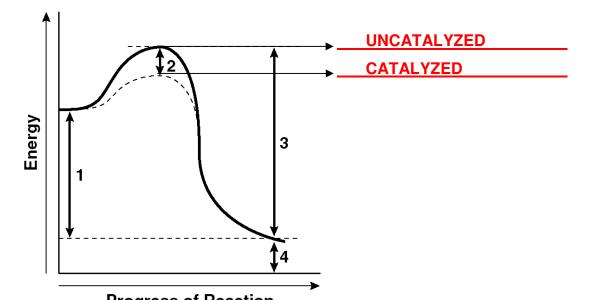
When we learned about chemical reactions, we also learned about that there are categories that describe reaction types. You should be familiar with the following types of reactions:


Reaction type	General Scheme	Specific Example
synthesis	$A + B \rightarrow AB$	$N_2 + 3 H_2 \rightarrow 2 NH_3$
decomposition	$AB \rightarrow A + B$	$2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$
single replacement	$A + BY \rightarrow AY + B$	Mg + 2 HCl \rightarrow MgCl ₂ + H ₂
double replacement	$AX + BY \rightarrow AY + BX$	$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$
neutralization	$HX + MOH \rightarrow H_2O + MX$	HCI + NaOH \rightarrow H ₂ O + NaCI

13. Identify the type of each reaction below:

(synthesis, decomposition, single replacement, double replacement, neutralization)

Reaction	Reaction type
Zn + CuSO₄ → ZnSO₄ + Cu	SINGLE REPLACEMENT
$HNO_3 + KOH \rightarrow KNO_3 + H_2O$	NEUTRALIZATION
$Mg + N_2 \rightarrow Mg_3N_2$	SYNTHESIS
$Cl_2 + 2 NaBr \rightarrow Br_2 + 2 NaCl$	SINGLE REPLACEMENT
$Pb(NO_3)_2 + 2 KI \rightarrow PbI_2 + 2 KNO_3$	DOUBLE REPLACEMENT
$2 \text{ NH}_4\text{NO}_3 \rightarrow 2 \text{ N}_2 + \text{O}_2 + 4 \text{ H}_2\text{O}$	DECOMPOSITION
$Ca(OH)_2 + HBr \rightarrow H_2O + CaBr_2$	NEUTRALIZATION
$CaCO_3 \rightarrow CO_2 + CaO$	DECOMPOSITION
$K_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + 2 KOH$	DOUBLE REPLACEMENT


14. Sometimes questions will discuss the energy in a chemical reaction. Here are some things you should know about energy:

15. Sometimes you will see a question about how a catalyst speeds up a reaction. Here is an important fact you should know about a catalyst:

A catalyst will **LOWER** the activation energy, which makes the reaction go faster.

16. Which path is the catalyzed reaction? Which path is the UNcatalyzed reaction? Label them.

17. How do you think the *speed* of the reaction will be affected by temperature? Well, you already

know that if you *increase* the temperature, the molecules will move **FASTER**

So if you *increase* the temperature, the molecules will collide with each other more often and

the reaction rate will **INCREASE**

MOLAR RELATIONSHIPS

Here are several important facts about moles that you should know. You should *memorize* the number 6.02×10^{23} and the number 22.4 and know when to use them.

General Facts	Specific Examples
1 mole = 6.02×10^{23} particles	1 mol of Cu = 6.02×10^{23} atoms of Cu 1 mol of CO ₂ = 6.02×10^{23} molecules of CO ₂
The mass of 1 mole (in grams) can be calculated by adding up the atomic masses of all the elements in the chemical formula.	1 mol of $H_2O = 1.0 + 1.0 + 16.0 = 18.0 \text{ g}$ 1 mol of $CO_2 = 12.0 + 16.0 + 16.0 = 44.0 \text{ g}$ 1 mol of NaCl = 23.0 + 35.5 = 58.5 g
At standard temperature and pressure (STP), 1 mole of gas has a volume of 22.4 L	1 mol of He @ STP = 22.4 L 1 mol of N ₂ @ STP = 22.4 L
The coefficients in a balanced chemical equation represent molar ratios.	In the equation N ₂ + 3 H ₂ → 2 NH ₃ , this can be summarized by saying that "1 mol of N ₂ reacts with 3 mol to produce 2 mol NH ₃ "

When we perform conversions with moles, we usually set up ratios, or conversion factors, that help us to cancel out units. Remember the following:

- The units will cancel out when they are on opposite sides of the line.
- When a number is above the line we multiply; when a number is below the line we divide.

Here are some examples:

Convert 3.58 x 10²⁴ atoms Fe into moles of Fe

1 mol Fe3.58 x 10²⁴ atoms Fe x ------ = 5.95 mol Fe 6.02 x 10²³ atoms Fe

Convert 2.25 moles of KNO₃ into grams of KNO₃ (Note that we need the periodic table to do this.)

 $\begin{array}{ll} \mathsf{K} = 39.1 \ \mathsf{x} \ 1 = 39.1 \\ \mathsf{N} = 14.0 \ \mathsf{x} \ 1 = 14.0 \\ \mathsf{O} = 16.0 \ \mathsf{x} \ 3 = \frac{48.0}{101.1 \ \mathsf{g}/\mathsf{mol}} \end{array} \begin{array}{l} 101.1 \ \mathsf{g} \ \mathsf{KNO}_3 \\ 1 \ \underline{\mathsf{mol}} \ \mathsf{KNO}_3 \ \mathsf{x} \end{array} = 227 \ \mathsf{g} \ \mathsf{KNO}_3 \\ 1 \ \underline{\mathsf{mol}} \ \mathsf{KNO}_3 \end{array}$

Now it's your turn:

- 1. Perform the following conversions:
- a) Calculate the molar mass of Ca(NO₃)₂

Ca = 40.0 x 1 = 40.0 N = 14.0 x 2 = 28.0 O = 16.0 x 6 <u>= 96.0</u> 164.0 grams per mole

b) How many grams of oxygen are present in 2 moles of CaCO₃?

2 moles of CaCO₃ x ------ x ------- x ------ = 96.0 g O 1 mol CaCO₃ 1 mol O

c) How many moles are present in a 100.0-g sample of C₂H₆O?

d) What is the mass of 9.25×10^{22} molecules of water? (two steps).

 $\begin{array}{ccc} 1 \text{ mol } H_2 O & 18.0 \text{ g } H_2 O \\ 9.25 \text{ x } 10^{22} \text{ molecules } H_2 O \text{ x } & ------ \text{ s } 1 \text{ mol } H_2 O \\ & 6.02 \text{ x } 10^{23} \text{ molecules } H_2 O & 1 \text{ mol } H_2 O \end{array}$

Another type of molar conversion you will be asked to do is related to a balanced chemical equation. We will use the coefficients to set up molar ratios, or conversion factors. Again we will try to cancel out units. Here is an example:

When magnesium metal is burned, it produces magnesium oxide (MgO). How many moles of oxygen gas are needed to burn 10 moles of Mg?

In this problem we are not given a balanced chemical equation, so we have to write one first:

here is the equation: Mg + $O_2 \rightarrow MgO$

and now it is balanced: $2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$

Notice that there are 2 moles of Mg for every 1 mole of O_2 . That is the molar ratio you need.

 $1 \mod O_2$ 10 mol Mg x ----- = 5 mol O₂ 2 mol Mg

Now it's your turn:

- 2. Perform the following conversions:
- a) Given the following equation: $2 C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$ If 5.2 moles of ethane (C_2H_6) is burned, how many moles of O_2 are required?

b) Given the following equation: $2 \text{ Al} + 6 \text{ HCl} \rightarrow 2 \text{ AlCl}_3 + 3 \text{ H}_2$ If 3.4 moles of aluminum reacts with excess hydrochloric acid, how many moles of H₂ will be produced?

3 mol H₂ 3.4 mol Al x ------ = 5.1 mol H₂ 2 mol Al

Sometimes you are asked to convert *grams of one chemical into grams of another chemical*. With this type of molar conversion you will need to do *three steps*.

Again we will try to cancel out units. Here is an example from the 2005 SOL test:

 $2 \text{ KOH} + \text{H}_2 \text{SO}_4 \rightarrow 2 \text{H}_2 \text{O} + \text{K}_2 \text{SO}_4$

What mass of potassium hydroxide is required to react completely with 2.70 g of sulfuric acid to produce potassium sulfate and water?

In this problem you need to go from grams of H₂SO₄ into grams of KOH

If you take it one step at a time, and remember to set up the units so they will cancel out, then this is not a difficult problem:

This is the basic set-up, with the units in place. Notice how everything cancels out except for the grams of KOH at the end of the problem.

 $\begin{array}{cccc} mol \ H_2SO_4 & mol \ KOH & g \ KOH \\ 2.70 \ g \ H_2SO_4 \ x & \hline g \ H_2SO_4 & mol \ H_2SO_4 & mol \ H_2SO_4 & mol \ KOH \end{array} = & g \ KOH \\ \end{array}$

The 1st step requires the periodic table. When we add up all the atomic masses for H_2SO_4 , we get (2)(1.0) + (32.0) + (4)(16.0) = 98.0 g/mol

The 2^{nd} step requires the coefficients. We see that 2 moles of KOH react with 1 mole of H₂SO₄.

The 3^{rd} step requires the periodic table again. When we add up all the atomic masses for KOH, we get (39.1) + (16.0) + (1.0) = 56.1 g/mol

Now put all the numbers in place:

Remember that if a number is above the line you multiply and if it is below the line you divide.

Now it's your turn:

3. Perform the following conversion:

Given the following equation: $Pb(NO_3)_2 + 2 KI \rightarrow PbI_2 + 2 KNO_3$ If 5.00 grams of potassium iodide reacts according to the equation above, how many grams of lead iodide will be produced?

 $1 \text{ mol Kl} \qquad 1 \text{ mol Pbl}_2 \qquad 461.0 \text{ g Pbl}_2$ 5.00 g Kl x ------ x ------ x ------ = 6.94 g Pbl₂ 166.0 g KI 2 mol KI 1 mol Pbl₂

Another type of problem that you will need to know involves moles of gas at standard temperature and pressure (STP). Conditions of STP are pressure = 1 atm and temp. = 0° C The equation we use for gases is called the ideal gas law: PV = nRTP = pressure, V = volume, n = moles, R = a gas constant, and T = temperature. When you solve for the volume of 1 mole of any gas at STP, this is what you get:

nRT (1 mol)(8.31 kPa L mol⁻¹ K⁻¹)(273 K) V = ----- = ------ = 22.4 L (101.3 kPa) Р

Because this number is used so often, you should just memorize that

1 mole of any gas at STP has a volume of 22.4 L

There are a number of ways in which you can use this information. Try the following examples:

4. a) What is the density of CH_4 gas at STP?

16.0 q 1 mol CH₄ = 16.0 g and also has a volume of 22.4 L, so density = ------ = 0.714 g/L22.4 L

b) Which sample of gas has the largest volume at STP?

10.0 g He 10.0 g Ne 10.0 g Ar 10.0 g Kr

The sample with the largest amount of moles should have the largest volume. To convert from grams to moles we need to divide 10.0 g by the molar mass for each gas. That means that Helium is the sample with the largest # of moles.c) What is the volume of 3.01 x 10²³ atoms of He gas at STP?

1 mol He 22.4 L 3.01 x 10^{23} atoms He x ------ x ------ x ------ = 11.2 L He 6.02 x 10^{23} atoms He 1 mol He

 $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

Suppose that you have a balanced chemical equation like the one above, and that all of the chemicals are gases. You already know that the coefficients represent *molar ratios*. But if all of the chemicals are gases, then the coefficients *also represent volume ratios*! In other words, the equation above can be thought of as the following: "1 liter of N₂ reacts with 3 liters of H₂ to produce 2 liters of NH₃."

Suppose the question asks you something like the following:

How many liters of hydrogen gas are needs to react completely with 2.00 L of nitrogen gas?

All you have to do is use the coefficients as the ratio between liters of H_2 and liters of N_2 :

 $3 L H_2$ 2.00 L N₂ x ------ = 6.00 L H₂ It's really simple. Try the following examples: 1 L N₂

5. a) Given the following equation: $2 C_2 H_6(g) + 7 O_2(g) \rightarrow 4 CO_2(g) + 6 H_2O(g)$ To produce 12 liters of water, how many liters of oxygen gas are needed?

$12 L H_2O x \frac{7 L O_2}{6 L H_2O} = 14 L O_2$

b) Given the following equation: $2 H_2S(g) + 3 O_2(g) \rightarrow 2 H_2O + 2 SO_2(g)$ If 4.0 liters of oxygen gas reacts according to the above reaction, how many liters of H₂S will be required?

 $\begin{array}{c} 2 L H_2 S \\ 4.0 L O_2 x ----- = 2.7 L H_2 S \\ 3 L O_2 \end{array}$

The last topic in molar relationships deals with molarity (M), which is defined as follows:

moles of solute

M = ----- This equation can be rearranged: (M) x (liters of solution) = moles

Remember the following:

If you are given *grams* of solute, you can convert it into *moles* using the periodic table. Of course you can also go from moles to grams, too.

If you are given a volume in mL, you can convert it into *liters* by dividing by 1000. For example, 500 mL = 0.500 L. Of course you can also go from liters to mL by multiplying by 1000.

Here are some example problems that deal with molarity.

6. a) How many grams of KCI are required to prepare 500 mL of a 0.125 M solution?

The molar mass	0.125 mol KCI	74.6 g KCl
of KCI is equal to	0.500 L x x	= 4.66 g KCl

39.1 + 35.5 = 74.6 g/mol

1 L 1 mol KCl

b) What is the molarity of a solution that is prepared by dissolving 75.0 g of $C_6H_{12}O_6$ in enough water to prepare 500.0 mL of solution?

c) How many milliliters of 2.50 M NaCl are needed to provide 0.150 mol NaCl?

1 L 1000 mL 0.150 mol NaCl x ------ x ------ x ------ = 60 mL 2.50 mol NaCl 1 L

Sometimes a solution is prepared by diluting (adding water) to a concentrated solution. If you have to do a problem that involves dilution, here is how you do it:

- $M_1V_1 = M_2V_2$ where M_1 is the initial molarity of the concentrated solution M_2 is the final molarity of the diluted solution V_1 is the initial volume of the concentrated solution V_2 us the final volume of the diluted solution
- Example: A 15 mL sample of 4.0 M NaOH was diluted to a volume of 250 mL. What is the new concentration of the solution?

 $(4.0 \text{ M})(15 \text{ mL}) = (M_2)(250 \text{ mL})$

$$M_2 = \frac{(4)(15)}{250} = 0.24 \text{ M}$$

7. a) If 50.0 mL of a 3.00 M solution is diluted to a volume of 500 mL, what is the final concentration?

 $(3.00 \text{ M})(50.0 \text{ mL}) = (M_2)(500 \text{ mL})$

M₂ = (3)(50) = 0.30 M 500 Note that the volume increased ten-fold and the molarity decreased by a factor of ten.

b) 750 mL of 0.50 M HCl is required for a lab experiment. How many milliliters of 6.00 M HCl should be used to prepare this solution?

 $(6.00 \text{ M})(V_1) = (0.50 \text{ M})(750 \text{ mL})$ $V_1 = (0.5)(750) = 62.5 \text{ mL}$

PHASES OF MATTER AND KINETIC MOLECULAR THEORY

Here are some important things to know about the kinetic molecular theory:

Gas particles are in constant, rapid, random motion, and they are very far part from each other. When you increase the temp., gas particles travel faster because they have more kinetic energy. Here are some gas laws you should know:

Charles' Law: As temp. goes up, volume goes up (and vice versa) Boyle's Law: As pressure goes up, volume goes down (and vice versa)

If you ever see a problem involving a gas collected "by water displacement" or "over water," you will always subtract the water pressure from the total pressure to get the pressure of the dry gas.

1. For example: A sample of oxygen gas is collected over water at 98.67 kPa. If the partial

pressure of the water is 2.67 kPa, the partial pressure of the oxygen is _______

In general, the total pressure of a gas *mixture* is equal to the sum of the partial pressures of each individual gas.

2. If you have to do any calculations with gases that involve temperature, you should always

convert the temperature from °C to K by ADDING 273 TO IT

Here is an example: A sample of gas occupies a volume of 5.00 L at 25°C. This gas was heated at constant pressure and the volume increased to 6.00 L. What is the new temperature of the gas?

- Charles Law: $\underline{T}_{\underline{1}} = \underline{T}_{\underline{2}}$ $(\underline{298 \text{ K}}) = (\underline{T}_{\underline{2}})$ $T_{\underline{2}} = (\underline{6.00})(\underline{298}) = 358 \text{ K} 273 = 85^{\circ}\text{C}$ (5.00 L) (5.00 L) (5.00)
- 3. A sample of gas occupies a volume of 10.0 liters at 10°C. What would be the volume of this gas at 50°C if the pressure remains constant?

Charles Law: $\frac{V_1}{T_1} = \frac{V_2}{T_2}$ $\frac{(10.0 \text{ L})}{(283 \text{ K})} = \frac{(V_2)}{(323 \text{ K})}$ $V_2 = \frac{(10.0)(323)}{(283)} = 11.4 \text{ L}$

If you are given a problem that involves the ideal gas law, you will need to remember

PV = nRT

Here is an example problem:

$$R = 8.31 \frac{kPa \bullet dm^3}{moles \bullet K}$$

A gas cylinder is filled with 4.00 moles of oxygen gas at 300.0 K. The piston is compressed to yield a pressure of 400.0 kPa. What is the volume inside the cylinder?

A 3.19 dm³
B 6.25 dm³
C 24.9 dm³
D 31.5 dm³

To answer this question, you need to solve for V:

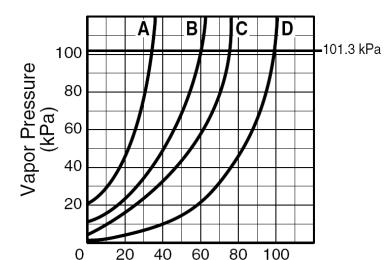
 $V = \frac{nRT}{P} = \frac{(4.00 \text{ moles})(8.31 \text{ kPa } \text{dm}^3 \text{ mol}^{-1} \text{ K}^{-1})(300.0 \text{ K})}{(400.0 \text{ kPa})} = 24.9 \text{ dm}^3 \text{ (Notice that all units cancel out except } \text{dm}^3)}$

4. A sample of oxygen gas occupies a volume of 15.0 liters at a pressure of 250 kPa and a temperature of 50°C. How many *moles* of oxygen are present in this gas sample?

n =
$$\frac{PV}{RT}$$
 = $\frac{(250 \text{ kPa})(15.0 \text{ L})}{(8.31 \text{ kPa dm}^3 \text{ mol}^{-1} \text{ K}^{-1})(323 \text{ K})}$ = 1.40 moles

5. There are other things you should know about phases of matter: Fill in the name of the phase changes below:

These three phase changes are all ENDOTHERMIC:					
Solid → Liquid	MELTING	Liquid → Gas	EVAPORATION	Solid → Gas	SUBLIMATION


	These three phase changes are all EXOTHERMIC:				
Gas → Liquid	CONDENSATION	Liquid → Solid	FREEZING	Gas → Solid	DEPOSITION

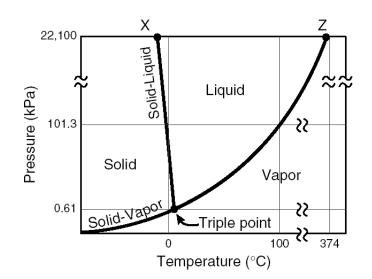
Another word for melting is FUSION. Another word for evaporation is VAPORIZATION.

If you see a diagram with a sealed liquid in a jar or flask, you should know that there is an equilibrium happening in there. The rate of evaporation is equal to the rate of condensation.

Vapor pressure is defined as the pressure exerted by the gas above a liquid. Here is an example of some vapor pressure curves:

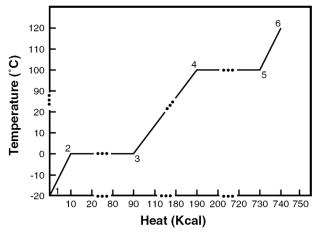
- 6. From this graph we can get certain information.
 - a) The normal boiling point of liquid A is <u>34-35°C</u>
 - b) If the external pressure is reduced to 60 kPa, then Liquid C would boil at 60-61°C
 - c) The liquid with the strongest intermolecular forces is most likely LIQUID D

Liquid	Boiling Point (°C)
ether	35
ethyl alcohol	78
water	100
glycerine	290


7. Which of the liquids in the table above would have the *highest vapor pressure* at room temperature? Explain

ETHER HAS THE LOWEST BOILING POINT. THEREFORE IT SHOULD HAVE THE HIGHEST VAPOR PRESSURE AT ROOM TEMPERATURE. A LIQUID WITH A HIGH VAPOR PRESSURE SHOULD EVAPORATE EASILY, AND ETHER PROBABLY HAS THE WEAKEST IATTRACTIVE FORCES.

8. If you want to get water to boil BELOW 100°C, you can <u>DECREASE</u> the air pressure.


If you want to get water to boil ABOVE 100°C, you can _____ INCREASE the air pressure.

9. If you add salt to water, this will **LOWER** the freezing point and **RAISE** the boiling point.

10. The diagram above is called a phase diagram. All along the boundary between two phases there is an equilibrium between those phases. What can we say about the triple point?

AT THE TRIPLE POINT, ALLTHREE PHASES OF MATTER (SOLID, LIQUID, AND GAS) ARE IN EQUILIBRIUM WITH EACH OTHER.

11. The diagram above is called a heating curve. Match the descriptions of what is happening with the various line segments

	С	Between 1 and 2	Α.	ice is melting
	Α	Between 2 and 3	В.	liquid water is evaporating
	D	Between 3 and 4	C.	ice is being heated
	В	Between 4 and 5	D.	liquid is being heated
_	Е	Between 5 and 6	E.	gas is being heated

Sometimes you will be asked to calculate how much heat is needed to raise the temperature of water. Here is an example:

How many calories of heat are needed to raise the temperature of 50.0 g of water from $20.0^{\circ}C$ to $80.0^{\circ}C$?

You should know that it takes ONE CALORIE to raise the temperature of ONE GRAM of water by ONE DEGREE CELSIUS.

So all you have to do is use the following equation:

(MASS) x (<u>1 calorie</u>) x (Δ T) where Δ T is the change in temperature. g °C

 $(50.0 \text{ g}) \times (1 \text{ cal} / \text{g} ^{\circ}\text{C}) \times (60^{\circ}\text{C}) = 3000 \text{ calories}$

12. How many calories are needed to raise the temperature of 75.0 g H_2O from 30.0°C to 70.0°C?

(75.0 g) x (1 cal / g °C) x (40°C) = 3000 calories (OOH, THAT WAS JUST A COINCIDENCE!)

Sometimes you will be asked to calculate how much heat is needed to melt a substance. They will give you the heat of fusion. Here is an example:

13. The heat of fusion for water is 6.12 kJ per mole. How many kJ of heat is required to melt 100.0 grams of ice at 0°C?

14. If you see a question that mentions that water has a high boiling point or a high heat capacity, then the explanation will be that water has very strong intermolecular forces, known as

HYDROGEN BONDING

15. If you see any questions that deal with polarity and mixing two liquids together, you should

know that two liquids will mix well together if they are <u>BOTH POLAR OR BOTH NONPOLAR</u>

16. You might be asked to predict if the attractive forces are strong or weak. You should know that

if a substance has a high melting or boiling point, then it will have <u>STRONG</u>

attractive forces.

END OF SOL REVIEW PACKET. GOOD LUCK ON THE SOL TEST!