1. -6
2. 8 ($x=-2$ is extraneous)
3. $x=1, x=\log _{3} 2$
4. 11.2 years
5. $(-2,-5)$
6. $a=\frac{19}{81}$
7. $y=\left(\frac{1}{x}+1\right)^{2}$
8. a) -4 b) -5
c) $-3 \mathrm{~d})-15$
9. $\sin ^{-1}\left(\frac{2}{5}\right)$ has one unique answer because you are evaluating the function $\sin ^{-1} x$ to find the one angle in the range of the sine inverse function such that the sine of the angle is $\frac{2}{5}$; the equation $\sin x=\frac{2}{5}$ has an infinite number of answers since you are being asked to find all angles such that the sine of the angle is $\frac{2}{5}$ and with the period of sine being 2π that leads to an infinite number of angles that have a y-coordinate on the unit circle of $\frac{2}{5}$.
10.

11. $p+2 q$
12. $y=-3(x+3)^{2}+9$
13. $\sin \theta=\frac{5}{\sqrt{32}}$
14. $a=15.5$ or 6.76
15. 1120
16. a) The ratio of any two consecutive terms must be a constant.
b) Show that $\frac{u_{n+1}}{u_{n}}$ will always be constant.
17. x-intercept $\left(\frac{-2}{\log 6}, 0\right) \quad y$-intercept $(0,2)$

18. $x=\frac{\log \left(\frac{7}{243}\right)}{\log \left(\frac{7}{9}\right)}$
19. a) Hint: let the quadratic function be $f(x)=a x^{2}+b x+c$ and the linear function be $g(x)=m x+d$ then show that $f(g(x))$ and $g(f(x))$ are both quadratic. b) Use your result from part a with m and a both being negative.
20. 264 (If you did this by finding all 6 values and adding them try to do it using formulas instead).

