1.
$$-6$$

2. $8 (x = -2 \text{ is extraneous})$
3. $x = 1, x = \log_3 2$
4. 11.2 years
5. $(-2, -5)$
6. $a = \frac{19}{81}$
7. $y = \left(\frac{1}{x} + 1\right)^2$
8. a) -4 b) -5 c) -3 d) -15
9. $\sin^{-1}\left(\frac{2}{5}\right)$ has one unique answer because you are evaluating the function $\sin^{-1}x$ to find the one angle in the range of the sine inverse function such that the sine of the angle is $\frac{2}{5}$; the equation $\sin x = \frac{2}{5}$ has an infinite number of answers since you are being asked to find all angles such that the sine of the angle is $\frac{2}{5}$ and with the period of sine being 2π that leads to an infinite number of angles that have a y-coordinate on the unit circle of $\frac{2}{5}$.
10. $11. p + 2q$
11. $p + 2q$
12. $y = -3(x + 3)^2 + 9$
13. $\sin \theta = \frac{5}{\sqrt{32}}$
14. $a = 15.5$ or 6.76
15. 1120
16. a) The ratio of any two consecutive terms must be a constant.

b) Show that $\frac{u_{n+1}}{u_n}$ will always be constant.

- 19. a) Hint: let the quadratic function be f(x) = ax² + bx + c and the linear function be g(x) = mx + d then show that f(g(x)) and g(f(x)) are both quadratic.
 b) Use your result from part a with m and a both being negative.
- 20. 264 (If you did this by finding all 6 values and adding them try to do it using formulas instead).